
www.elsevier.com/locate/apm

Applied Mathematical Modelling 30 (2006) 458–465
Finding K shortest looping paths with waiting time
in a time–window network

Hsu-Hao Yang a,*, Yen-Liang Chen b,1

a Institute of Production System Engineering and Management, National Chin-Yi Institute of Technology,

Taiping 411, Taiwan, ROC
b Department of Information Management, National Central University, Chung-Li, Taiwan 320, ROC

Received 1 August 2004; received in revised form 1 May 2005; accepted 25 May 2005
Available online 19 July 2005
Abstract

A time-constrained shortest path problem is a shortest path problem including time constraints that are
commonly modeled by the form of time windows. Finding K shortest paths are suitable for the problem
associated with constraints that are difficult to define or optimize simultaneously. Depending on the types
of constraints, these K paths are generally classified into either simple paths or looping paths. In the pres-
ence of time–window constraints, waiting time occurs but is largely ignored. Given a network with such
constraints, the contribution of this paper is to develop a polynomial time algorithm that finds the first
K shortest looping paths including waiting time. The time complexity of the algorithm is O(rK2|V1|

3), where
r is the number of different windows of a node and |V1| is the number of nodes in the original network.
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1. Introduction

A shortest path problem (SPP) deals with finding a path with minimum time, distance, or cost
from a source node to a destination node through a connected network. Including time con-
straints in a shortest path problem leads to the development of a time-constrained shortest path
problem (TCSPP) that can be seen as a generalization of a SPP. These constraints are commonly
modeled using time windows where a node can be visited only in a specified time interval [1–3].
Two types of time windows are widely used: hard time–window and soft time–window. In a hard
time–window, the solution is infeasible if time constraints are violated [4,5]. In contrast, in a soft
time–window, the solution remains feasible but a cost penalty will be incurred if time–window
constraints are violated [6].

The extension from finding one shortest path to K shortest paths appears to be natural because
the problem may be associated with some constraints that are difficult to define or to optimize
simultaneously. Under the circumstances, a common way is to compute several paths, rank the
paths according to some criteria, and then determine the paths that meet the criteria. Depending
on the types of constraints, the paths are generally classified into two classes: (1) simple paths
(paths without repeated nodes and arcs), and (2) looping paths (paths with repeated nodes and
arcs). These two classes of paths have long been studied together because they are not only similar
(from one path to K paths) in general but also complementary (simple versus looping) in
particular.

Given a network with time windows, the objective of this paper is to find the first K shortest
looping paths that include waiting time. Waiting time occurs in a TCSPP but is largely ignored
in the literature. To know why we consider waiting time, consider a path route (s,A,D,d) shown
in Fig. 1 [7], where the number on an arc is the travel time and nodes are associated with sets of
windows. Without considering waiting time, the total time of this path route is 10 because we
reach and leave a node at the same time. If the waiting time is involved, however, two situations
occur. First, we have to wait for the next available window if the arrival time is not within a win-
dow. Second, if the arrival time is within a window, we have two choices: (1) leave immediately, or
(2) wait. Under normal conditions, we will eventually leave a node after a certain number of
windows.

Consider the path P = (s,A,D,d) in Fig. 1 to see how the waiting time may cause a path to be
represented in different ways. Let xt be the departure time of node x in the path at time t. Then, we
have two possible ways to represent this path: (s0,A4,D8,d10) and (s0,A5,D8,d10). Because of these
different representations, we will refer to path route simply as a listing of nodes, whereas path as a
listing of nodes together with their departure times. That is, a set of paths may correspond to a
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Fig. 1. A path route in a time–window network.
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path route. In this case, two paths, i.e., (s0,A4,D8, d10) and (s0,A5,D8,d10), correspond to the path
route (s,A,D,d).

With respect to finding the first K simple paths, Yen�s algorithm [8] ran in O(K|V|3) time for a
general network, where |V| is the number of nodes. Katoh et al. [9] improved the time to be
O(K(|A| + |V|log|V|)), where |A| is the number of arcs. Hadjiconstantinou and Christofides [10]
presented an efficient implementation for finding a large number of simple paths based on Katoh
et al. [9]. Finding K simple paths for a network with time–schedule or time–window constraints
can be found in [11,7]. As for finding K looping paths, Dreyfus� algorithm [12] ran in
OðKjV j log jV jÞ time given a shortest tree is available. Fox [13] gave an algorithm to run in
OðjV j2 þ KjV j log jV jÞ time. Using a concept of path deletion, Martins [14] developed an algo-
rithm with the worst time to be O(K3|V|). Later, this time was improved to be O(K2|A|) by Azevedo
et al. [15] who used an efficient implementation. Martins� path deletion was generalized by Ville-
neuve and Desaulniers [16] who developed the solution for the shortest path problem with forbid-
den paths. The algorithm of Azevedo et al. [15] formed the basis of Yang and Chen [17] who
developed a polynomial time algorithm for finding K shortest looping paths in a traffic–light net-
work. Eppstein [18] used an implicit representation of paths to run in O(|A| + |V|log|V| + K|V|)
time. On the basis of Eppstein�s algorithm, Jiménez and Marzal [19] proposed a modified version
that improved computational performance in practice. For a traffic–light network, Yang and
Chen [20] developed a polynomial time algorithm to find K shortest ‘‘unique-arc walks,’’ which
means that the path may include repeated nodes but will exclude repeated arcs. Other recent
developments related to K shortest paths can be found in [21,22].

The remainder of this paper is organized as follows. In Section 2, we describe the problem and
develop an algorithm to find the first K shortest looping paths in the underlying network. We also
provide the time complexity of the algorithm in this section.We present the conclusion in Section 3.
2. The problem and solution

In the following, we define the time–window network in Section 2.1. In Section 2.2 and Section
2.3, we introduce the algorithms of Chen and Yang [7] as well as Yang and Chen [17] that form
the basis of our algorithm to solve the problem. We present our algorithm and show its complex-
ity in Section 2.4.

2.1. Problem definition

Let N = (V1 [ V2,A,WL, t, s,d) denote a time–window network, where V1 is the node set with-
out window constraints, V2 is the node set with window constraints, A is the arc set without multi-
ple arcs and self-loops, t(u,v) is the travel time of arc (u,v) 2 A. For each node u 2 V2, it is
associated with a window-list WL(u) = (wsu,wu,1,wu,2, . . .,wu,r), where wsu is the starting time of
the first window and wu,i is the i th time window of node u for i = 1 to r. Each window wu,i is asso-
ciated with a duration du,i and a set of node-triplets NTu,i, where a node-triplet hx,u,yi is in NTu,i

if visiting node y from node x is allowed in window wu,i. If we represent windows using a repeated
sequence and by assuming wu,0 = wu,r, we have the relationship that wu,(k·r) + i = wu,i for any non-
negative integers k and i, where i 6 r.
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Fig. 2. A time–window network.
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Because a node u in V1 can be regarded as a node in V2 by associating it with a window of infi-
nite duration and containing all possible node-triplets, we assume that all the nodes are in the set
V2 for ease of presentation. Consider Fig. 2 that illustrates the time–window network, where the
number next to each arc is the arc�s travel time. We also show each node�s, say u�s, duration du,i
and its node-triplets NTu,i wherever appropriate. For example, the first window of node C starts at
time 3; the duration of window wC,1+2i is 2 and the duration of window wC,2+2i is 4 where i is a
nonnegative integer. The triplet hA,C,di is the allowable route in window wC,1+2i; hB,C,di and
hD,C,di are allowable in window wC,2+2i. Therefore, if at node C from node A, we can visit node
d only in window wC,1+2i, and so on. Chen and Yang [23] developed an algorithm that labels arcs
rather than nodes to find the shortest path as (s,A,D,d) with total time 11. Because the algorithm
labels arcs, each arc (u,v) in A is associated with a label arrived (u,v) to denote the earliest time to
arrive at node v through arc (u,v).

2.2. Finding paths corresponding to a path route

Recall that a set of different paths may correspond to a path route because of waiting time in-
volved. Assume that we need to find the first 30 paths. To find these paths, we find the first path
route P1 with total time T1. Given P1 and T1, if we can find 15 paths with the same route but dif-
ferent waiting times, we output these paths and continue to find the second path route, say P2.
Given P2, assume we find another 19 paths. Because this number has satisfied our requirement,
we output only the first 15 paths as the solution. Doing this way, we will successfully find the first
30 paths in the network. We have just roughly described the algorithm in [7] that constructs a
graph (called related-graph) and then uses this graph to find all corresponding paths (called re-
lated-paths) given a path route P and its total time T. In addition, the related-graph is used to find
the path route P�s next total time (called next-time) that is later than T.
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2.3. Finding shortest looping paths

Once we have found the set of paths corresponding to a path route, we continue to find the next
path route that may contain loops. To find this path route, we use the algorithm of Yang and
Chen [17] that includes a shortest path algorithm to find the shortest path P and a path deletion
algorithm (called Network Enlarge Algorithm) to generate a new network N 0 given a network N.
This path deletion algorithm, in fact, results in an enlarged network where all the paths but the
deleted one (i.e., P) can be determined. The enlarged network is formed by adding new well-
defined nodes and arcs. Take the network in Fig. 3(a) for example. After the shortest path
P = (0,1,2,3,6, t) is found, we can form the enlarged network N 0 as shown in Fig. 3(b). That
is, given N1 as the initial network, a sequence of networks {N1,N2, . . . ,Ni, . . . ,Nk} will be gener-
ated where the i-th shortest path Pi will be determined from Ni. After enlarging the network, we
need to update labels of new nodes and arcs.

2.4. The algorithm

Having described the algorithms that find a set of paths corresponding a path route and find
looping paths for a time–window network, we present our framework as follows. The framework
iteratively uses the algorithm by [7] to find a path route and its corresponding paths, and the algo-
rithm by [17] to find the next path route that may contain loops.

Because the preceding framework may generate a great number of paths, we apply the heap
structure of Fredman and Tarjan [24] to manage the paths. The advantage of using the heap struc-
ture is that the times to find and remove the minimum element or to insert a new element are all
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Fig. 3. (a) The network N and the shortest path P. (b) Delete P from N to generate N 0.
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O(logn) for a heap with n elements. Let an element in a heap, say Q, represent an enumerated path
route and each element is associated with its total time. Recall that a path route is used to generate
a set of paths and then to enlarge the network. Moreover, we need to store this path route with its
next total time in case it remains to be the next shortest path. Therefore, each path route in Q can
be classified into two types: (1) the path route that has been used but with smaller total time, and
(2) the path route that has not been used yet. Because selecting the first type of path route will
produce a network that has been enlarged, we need to mark those of the first type to prevent
the duplication. Therefore, each path in Q is associated with the mark as well as the total time.
In the algorithm below, we refer to f(related-paths) as a function to find the set of paths corre-
sponding to the path route P, f(next-time) as a function to find the path route P�s next total time
that is later than T, and use Network Enlarge Algorithm to enlarge the network.

K Shortest Looping Algorithm

1. Find P by using the algorithm of Chen and Yang [23]. Store P to Q.
2. For w = 1 to K, execute the cycle from step 3 to step 9.
3. Select the shortest path P with total time T from Q, and remove P from Q.
4. Use f(related-paths) to output the paths as the w-th, . . . , (w + x�1)-th paths.
5. Set w = w + x�1. Set T 0 = f(next-time) and P 0 = P.
6. Mark P 0 and store P 0 with T 0 into Q.
7. If P has been marked then go to the next cycle.
8. Use Network Enlarge Algorithm.
9. Update labels of added nodes and arcs.

To show the complexity of this K Shortest Looping Algorithm, we provide some lemmas that are
used to show the complexities of intermediate steps. Also recall that r is the number of different
windows of a node and |V1| is the number of nodes of network N1.

Lemma 1 [23]. The time complexity to find a path route P in the underlying network is O(r|V1|
3).

Lemma 2. The time complexity of the function f(related-paths) is O(r|V1|
2).
Proof. By Lemma 1 of Chen and Yang [7], the time to construct a relate-graph is O(r|V1|
2). Hav-

ing constructed the related-graph, we can execute the function f(related-paths) by a breadth-first
search or a depth-first search. Because the time of a depth-first search or a breadth-first search is
simply a linear function of the network size, the total time of the function f(related-paths) is
O(r|V1|

2). h

Lemma 3 [17]. The time complexity of executing Network Enlarge Algorithm for the K-th iteration
is O(rK|V1|

3).

Lemma 4 [17]. The time complexity to update labels in the K-th iteration is Oðlog rKjV 1j3Þ. With
preceding lemmas, we use the following lemma to show the complexity of K Shortest Looping
Algorithm.

Lemma 5. The time complexity of the K Shortest Looping Algorithm is O(rK2|V1|
3).
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Proof. Step 1 can be done in O(r|V1|
3) time by Lemma 1. To analyze a single cycle from step 3 to

step 9, we decompose it into three parts: (1) step 3 to step 7, (2) step 8, and (3) step 9. For the first
part, the most time-consuming step is step 4 that executes the function f(related-paths), which can
be done in O(r|V1|

2) time by Lemma 2. The next part, step 8, can be done in O(rK|V1|
3) time by

Lemma 3. Finally, step 9 can be done in Oðlog rK j V 1j3Þ time by Lemma 4. Because O(rK|V1|
3) is

the dominant term among these three parts, the time will be O(rK|V1|
3) for a single cycle from step

3 to step 9. As a result, we need O(rK2|V1|
3) to execute the algorithm K iterations. h

An interesting question about our model is how sensitive are the model results to a given K such
as 30. Referring to the problem definition in Section 2.1, we see that the sensitivity of the model is
closely related to: (1) the starting time and duration of the window, and (2) the set of node-triplets.
For brevity, we illustrate only the former. Reconsider the example in Fig. 1, where we will add
some new windows to node A to observe the sensitivity. Given P = (s,A,D,d) and T = 10, con-
sider the case that a new window (16, 20) is added to node A. For simplicity, assume P remains
to be the next shortest path route. In this case, the next total time T 0 of P is 24 and the set of paths
is {(s0,A16,D22,d24), (s0,A17,D22,d24), (s0,A18,D22,d24), (s0,A19,D22,d24)}. In comparison, if
the new window added is (19,20), the next total time is 24 and the set of paths is
{(s0,A19,D22,d24)}. In the former situation where the window (16,20) is added, we may have sat-
isfied the number K because four more paths are generated. In the latter situation, since only one
path is generated, we may need to search for the next path route, which implies that the total time
will be greater than 24.
3. Conclusions

The main contribution of this paper is that we develop a polynomial time algorithm for enu-
merating the first K shortest looping paths involving waiting time in a time–window network.
Waiting time occurs in the presence of time–window constraints but is largely ignored in the lit-
erature. Finding the paths with waiting time may allow us to improve scheduling accuracy or
enhance resource utilization. Compared with the previous results by [7,17], it is interesting to ob-
serve that the time to find looping paths appears to be the dominant part in the algorithm. This
result arises from that finding looping paths relies on enlarging the network after a path is found.
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